Author Archive

Why training is important!

Here is a funny comic to explain the importance of training, even when you think you already know everything.

Configuring Visual Studio to open the browser InPrivate or Incognito

Sometimes, when coding a web application in visual studio, you may want to have the project start in an InPrivate or Incognito window. Browsers, such as Chrome, Edge, Firefox, and others, have a special way to open them that is clean as in no cookies or history or logins and it isn’t tied to your normal browser session. This is called Private browsing. They each brand it a little differently, with Edge being InPrivate and Chrome using Incognito, but they are all private browsing.

Visual Studio can easily be configured to open the browser in private browsing.

Configure Visual Studio to Launch the Browser in Private Mode

  1. Open Visual Studio
  2. Locate your Asp.Net Application and open it
    Create a new Asp.Net Project (you can throw away this project afterward)
  3. Once the project is open, locate the Debug Target icon, which is a green triangle that looks like a start icon:
  4. Click the drop-down arrow just to the right of it.
  5. Select Browse with:
  6. In the Browse With screen, click Add.
  7. Enter one or more of these values: (I entered both)

    Program: C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe
    Arguments: -InPrivate
    Friendly Name: Edge (InPrivate)

    Program: C:\Program Files\Google\Chrome\Application\chrome.exe
    Arguments: -incognito
    Friendly Name: Google Chrome (Incognito)

  8. Click OK.
  9. Now you can change the default if you desire.
    My default was set to Edge.

    To change the default, highlight the desired browser setting and click Set as Default button.
  10. Click Browse and your app will start in debugging and browse to the local url with your configured default browser.

Happy coding!



Microservices: Are they S.O.L.I.D., D.R.Y, and the Big O(N) problem

Whether the term microservice for you indicates a technology, an architecture, or a buzzword to land you that next dev job, you need to be familiar with the term. You need to know why there is buzz around it, and you need to be able to code and deploy a microservice.

Microservice Successes vs Failures

However, how successful are Microservices? A quick google search does not show promising results. One O’Reilly study found that less than 9% consider their microservices implementation a complete success. Most implementations report partial success at best. Why is this? Could it be that microservices are like any tool; great when used correctly, less than adequate when not. Remember, you can successfully pound a nail with a wrench, but a hammer is better and a nail gun is better than a hammer when coupled with power, a compressor, and enough space to use the tool. If you are building a tool that microservices isn’t suited for and you use microservices anyway because it is a buzzword, you are going to struggle and even if you don’t fail, you won’t have complete success.

Should you implement Microservices?

Should you be looking to implement microservices? Do you have a monolith that could be broken up with microservices?

This really depended on your architecture and what you think you mean when you say microservice. There is a breakdown in the industry in a clear definition of what is a microservice.

Is there a better alternative to a microservice? That answer depends highly on what you are trying to do.

Microservice Architecture Analysis with S.O.L.I.D.

The initial idea of Microservices is based on first of the S.O.L.I.D. principles. When looking at any one microservice, it fulfills the S in solid. But what about the other letters? What about other principles beyond SOLID, such as the Don’t Repeat yourself (DRY) principle or Big O? Do microservices still hold up?

Let’s do an analysis of some of these concepts.

S = Single Responsibility

The S in S.O.L.I.D. literally means Single Responsibility, which is the very premise of a microservice. A microservice should have a single responsibility. A microservice excels at this. Or it is supposed to. Implementation is where things can get dicey. How good is your development team at limiting your microservice to a single responsibly? Did you create a microservice of a micromonolith?

Theoretical Score: 100% – complete success

Implementation Score: 50% to variable – half the developers I interview can’t even tell me what each letter in S.O.L.I.D. stand for, let alone hold their microservice to it.

O = Open Closed Principle

The O in S.O.L.I.D. means Open for extension and closed for modification.

This principle is a problem for microservice architectures. The whole idea of microservices goes against this principle. In fact, Microservices are actually a 100% inverse of the recommendation made by the O in S.O.L.I.D. because microservices are open for modification and closed for extension.

If a microservice needs to be changed, you change it. Those changes automatically deploy.

Theoretical Score: 0% – complete failure

Implementation Score: 0% – complete failure

L = Liskov substitution principle

There terribly non-intuitive name aside, this principle means that if you substitute an parent object with a child, the code shouldn’t know or care that the child was used. You can now add substituting and interface with any concrete implementation and the code should just work regardless.

How do you do inheritance with a microservice? How do you substitute a microservice? You could create a child microservice that calls a microservice, but inheritance is just not a microservices concept.

Theoretical Score: N/A or 0% – complete failure

Implementation Score: N/A or 0% – complete failure

I = Interfaces Segregation principle

The I stands for Interfaces Segregation, which means you should have the minimal possible defined in any one interface. If more is needed, you should have multiple interfaces. A single microservice excels here as another principle idea of a microservice is that it has a defined interface for calling it and that it is a small (or micro) of an interface as possible. However, what if you need a slight change to an interface? Do you:

  1. Edit your microservice’s interface?
    You risk breaking existing users.
  2. Add a second interface?
    Doing this increases the size of your microservice. Is it still a microservice? Is it slowly becoming a mini-monolith now?
  3. Version your microservice interface in a new version, but keep the old version?
    This quickly can become a maintenance nightmare.
  4. Or create a completely separate microservice?
    Wow, creating a whole other microservice for one minor change seems like overkill.

Theoretical Score: 100% – complete failure

Implementation Score: 50% to variable – there is no clearly defined path here, you have to trust your developers do make the right decision.

D = Dependency Inversion

D means dependency inversion, which means you should depend upon abstracts and not concretes. Well, how do you do this if you are a microservice? What about when one microservice depends and three other microservices? And those other microservices are REST Apis? How do you depend on them abstractly?

This is a nightmare. The most difficult part of coding is depending upon external systems, their uptime.

Many developers and architecture will simply say that this is easy, just use queuing, messaging, a bus, but don’t make synchronous calls. If the system is down, it is down, regardless of whether it is synchronous or not. With synchronous calls, the caller can at least find out if a system is down immediately whereas with event-driven bus systems, this can be difficult to know. If one microservice is down, preventing a UI from displaying for a user, do you think a user cares whether you are synchronous or asynchronous? No. They care about clear messaging, which is harder to do asynchronously.

The efforts to solve this microservice conundrum often lead to an architecture that is far more difficult to maintain than the monolith. Remember, just because something is a monolith, doesn’t mean it was poorly architected.

Theoretical Score: 25% – extremely low success rate

Implementation Score: 25% to variable – there is no clear best practice here.

Other Tried and True Principles

Don’t Repeat Yourself (D.R.Y.)

Microservices don’t even try with this one. Even the top architects balk at the importance of this with microservices. Almost invariable, they recommend that you DO repeat yourself. With the packaging abilities of this day and age (Maven, NuGet, npm, etc.) there is no excuse for this. Duplicating code is rarely a good idea.

There are exceptions to D.R.Y. For example, Unit Tests. I duplicate code all the time because a self-contained test is better than a hundred tests using the same setup code. If I need to change the setup, I risk breaking all the tests using that setup, whereas if I copy my setup, then each test better stands alone and can better isolate what it is trying to test.

Do Microservices fall into the same bucket as Unit Tests? Unit Tests usually find bugs, but don’t usually have bugs themselves the same way production code does. Microservices aren’t like Unit Tests at all as they are production code. If you copy code to 10 production microservices and find a bug, fixing it in all ten places is going to be a problem.

Theoretical Score: 0% – extremely low success rate

Implementation Score: 25% to variable – there is no clear best practice here. An implementor could balance how much code is copied vs contained in packaging systems.

Big O

Microservices can crash and burn when it comes to Big O. Remember, Big O is how many times an action has to be done for a given thing or set of things, N, where N is a variable representing the number of things. If there are two sets of things, you can use multiple variables N, M. And for three sets, N, M, K (see the pattern, just keep adding a variable for each set of things). The action per set of things is often processor or memory or disk space, but it is not limited to those. It can be anything: IP Addresses, docker images, pipelines, coding time, test time.

Big O (1) is the ultimate goal. If you can’t reach it, the next best is Big O (Log n). If you can’t reach that, then you are at least Big O (N), which isn’t good. That means that your technology does NOT scale. Worse, you could be Big O(N * M) or Big O (N^2), in which case your technology slows down exponentially and scaling is impossible without a change.

What is the Big O for N microservices in regards to source control? Big O (N)

What is the Big O for N microservices in regards to CI/CD pipelines: Big O (N).

What is the Big O for N microservices in regards to docker containers? Big O (N)

What is the Big O for the number of terraform files (or whatever config you use for your deployment to your cloud environment of choice) for N microservices that you have to maintain? Big O (N)

What is the Big O for N microservices in regards to IP Addresses? Big O (N) – however, you can get to Big O (1) if you configure a intermediary routing service, but now all you’ve done is create a Big O (N) configuration requirement.

What is the Big O for microservices in regards to coding time? Big O (N) – remember, the recommendation from even the leading experts is to ignore the DRY principle and repeated your code.

What is the Big O for a mesh of microservices that have to communicate to each other? Big O (N^2)

A couple of places microservices shine in Big O are:

  1. Globally shared services. Example: How many NTP services does the world really need? Only one. Which is Big O (1).
  2. Microservice Hosts (Kubertnetes, AWS, Azure, etc) – these can provide logging, application insights, authentication and authorization for N microservices with a single solution, Big O (1).

The Big O of microservices is terrible and nobody is talking about it. Why have microservices gotten away with being Big O (N) for all this time? There are a couple of reasons:

  1. Automation has outweighed those concerns.
  2. Early adoption means few microservices, so Big O is not always a concern when there are only a few of something.
    Get past early adoption and start having a lot of microservices, and you will find you are in just as much of spaghetti hell as you were in with your spaghetti code monolith, only now it is harder to fix issues because they span multiple teams, across multiple environments. Wouldn’t it be great it if all those microservices were in 1 place? It was, before you strangled it away into microservices.

So when should you use Microservices?

Well, if you consider a Microservice to be a cloud RESTful service, for cloud-delivered solutions, then microservices are probably going to have a higher success rate for you.

If you are installing on Desktop/Laptops/Mobile Devices, then microservices, as they are defined, are not the best solution. However, that doesn’t mean you should have a spaghetti code monolith. No, if you are installing an application (not just a link to a cloud website) then please, keep your monolith, only instead of breaking it up into microservices on docker containers, look to follow S.O.L.I.D. principals, break it up.

Theoretical Score: 15% – unless we are talking about a global service, where, in those small instances, they are 100%.

Implementation Score: 10% to variable – An implementor could use shared CI/CD pipelines, terraform files with variables (but most are that mature yet). Some might use only 1 public IP, but they still need N private IPs.

The future is bright. As many of these Big O issues are solved, which will come with maturity, microservices will naturally become more attractive.

What microservices are good for?

Single-responsibility shared services

A Network Time Protocol service is a great example of one that should be a microservice. It has one responsibility and one responsibility only. We could have 1 instance of it for the whole world (notice that suddenly made this Microservice Big O (1), didn’t it?). However, distance is a problem, so the United States needs its own, Europe needs its own, and China needs its own. It doesn’t have to be separate code, just the same code deployed to multiple cloud regions.

Many services for cloud products can be single-responsibility shared services, which is why microservices target cloud products so well.


The ability to have a microservice auto-deploy additional instances of it, often in different regions, to support scaling.

What are Microservices NOT good for?

Services that every customer needs their own instance of

Not all services are shared. Some services need to be custom per customer. Microservices are not good for these. Especially if it is a pack of services.

On-Premise software

Microservices are best designed for cloud solutions or internal only integration services. If you sell software that a customer should install on-premise (on-premise means on one of their systems in their environments), microservices are not a good option.

Everything could be in the cloud but not everything should be in the cloud.

  • Desktop Applications and Suites such as Microsoft Office, Adobe Creative Suite. Sure there are cloud versions of these, but desktop apps work best as stand-alone desktop apps. That doesn’t mean they can’t integrate with a microservice, but they shouldn’t require a microservice to function (many apps still need to work without internet).
  • Networking and other security software: VPN software, desktop management software, or large applications that for many reasons shouldn’t be in the cloud.

You don’t want customers to have to deploy 100 docker containers to install your software on-premise. You just don’t. That doesn’t mean you couldn’t have a single cohesive system that includes microservices all installed on the same server, but the point is, those microservices are by many definitions not microservices if they are on the same server. Instead, they become a cohesive but decoupled single system.

Dark Network Environments

The definition of Dark Network means no access to the internet. That doesn’t mean these environments could have their own internal clouds, with microservices, but chances are, if they don’t have internet access, they won’t need to be accessed by a billion people and need to be elastic.

UI experiences

Like it or not, microservices architecture can degrade the UI experience. Why? Because microservices are usually asynchronous and event-driven. Microservices, especially asynchronous event-driven ones, often make the UI harder to code because you have to call service but you get no response. You then have to code the UI to go obtain the response from an event. This also increases debugging time. Some people say a synchronous microservice is not a microservice. If that is true, then all microservices make the UI harder to code and debug. If microservices make UI code harder, that is a significant con that every implementor should be aware of.

No matter who makes the claim that microservices are 100% decoupled, they are wrong if a UI requires that microservice. If Service X is required by a UI, the UI is coupled to it being up. It doesn’t matter if it is a microservice that fails gracefully or a monolith that crashes without grace. If a customer is in the UI and they can’t do something because a service is down, that service is a dependency, and the belief that changing a UI’s dependency to a microservice solves this is just false. If the UI doesn’t work, it doesn’t work. Just because the code itself isn’t coupled doesn’t mean a UI’s functionality isn’t tightly coupled to a dependent microservice’s existence and uptime.

Options beyond Microservices

Microservices are here to stay and are a great tool for the right uses. But they are not a swiss-army knife. They are best for delivering cloud solutions or taking processing off the client in desktop/mobile apps.

What are some alternatives to Microservices?

  1. A cohesive but decoupled single system may still be the right solution
    Note: What is the difference between a monolith and a ‘cohesive but decoupled single system’? Answer: the lack of tight coupling. A single system without tight coupling is not a monolith. If your system is tightly coupled, it is a monolith. If it is not tightly coupled, it is a ‘cohesive but decoupled single system’.

    1. A well-architected system that is highly decoupled is not a problem.
      1. Don’t fix it if it isn’t a problem.
      2. Don’t fix it just because microservices bigots name-call it a monolith instead of the ‘cohesive but decoupled single system’ that it is.
        Note: Some cloud enthusiasts use monolith as a bad word. It isn’t. Some can be prejudiced by their cloud enthusiasm, but you should know that older developers are just as prejudiced by their monoliths, well-architected or not.
    2. If an existing monolith is poorly architected, you may want to simply update the architecture to be a single cohesive but decoupled system instead of scrapping it entirely for microservices. The strangler pattern can work just as well to create a cohesive but decoupled single system as it does for creating microservices. You might even use single responsibility services (I didn’t say microservice because by some definition they aren’t microservices if they share a system) in your cohesive but decoupled single system.
  2. Multiple shared cohesive systems,
    1. Perhaps you can split your system into 50 microservices, or you can have 3 cohesive systems housing 15-20 services (which could be microservices that share a system) each.
  3. Plugin-based system design – You don’t have to be a microservice to get the benefits of decoupled and microcode.
    The strangler pattern works just as well for moving your code to decoupled microplugins as it does for microservices.
    How is this different from a cohesive but decoupled single system? It uses plugins whereas a cohesive but decoupled single system doesn’t have to use plugins.
    Note: This is my favorite solution. 99% of the benefits of microservices, 100% SOLID, and far fewer drawbacks.

Your code should have a Single Responsibility and vice-versa a single responsibility should have a single set of code (If you have three pieces of code that all have a single responsibility but they all have the same single responsibility, you are not S.O.L.I.D.). Look at interfaces, dependency injection, and please look at plugins. Plugin-based technology gives you almost everything you get for microservices.


Microservices can be a great tool or the wrong tool. Chose to use it wisely.


Note: This is obviously a highly summarized blog article, so please feel free to share your opinion and nit-pick as that is a form of crowdsourcing and is how blog articles get better.

A Cloud in a Box: My prediction of the Cloud, Data Center, Kubenetes, Quantum Computing, and the Rasberry PI

Do you remember when the first computer took up the size of a room? I predict that we will say something similar about the data center.

In the 2030s, we will say, Do you remember when a data center was the size of a building?

Technology developments

It won’t be long before we can buy a 1U (rack mount size) data center. How? We aren’t that far away. Let’s just combine a few technologies:

  1. Quantum computing. Did you read about Google’s breakthrough?
  2. Rasberry PI and similar devices, only smaller. Have you seen the size of a Raspberry PI Zero.
  3. Also, look at Microsoft’s Azure in a backpack.

The server terminal pattern

Also, have you noticed this pattern – as the client or on-premise device gets more powerful, more runs on the client.

Main Frame <————–> Dumb terminal

Web Server <————–> Desktop PC (Browser becomes Terminal)

Web Server <————–> Desktop PC (Browser runs code that used to run on the server)

The Cloud    <————–> Mobile device
Data Center

The pattern is this: What is on the server, eventually moves to the terminal. And the terminal gets ever smaller.

The Internal/External Wave

Now, there is also a wave where hardware started in house, moved out into Hosting services, then moved back in-house when internal data centers became easy, then moved back out when cloud was large and difficult to manage.

Once cloud is easy and smaller, that wave will move back in-house.

The future: The cloud in a box

Imagine that we have a micro server, a Rasberry PI type of device, only it has a quantum processor and is the size of a Micro SD. It has metal connectors and slides into a bus on a 1U server. The 1U server bus holds 100 x 200 of these small micro servers for a total of 20,000 servers in 1U of space.  Each PI has 1 TB of space.

Now these are small and easy to host internally. A company can easily host one of them or put one in US East, US West, Europe, and Asia, and anywhere needed.

This is a cloud in a box.

Git Cheatsheet


git clone <path or url to repo>

Create an empty repo

git init

Check if upstream has updates

git fetch

Create a branch

git branch mybranch

Switch to another branch

git checkout mybranch

Create and switch to another branch in 1 command

git checkout 0bf7e9a915a15be0bdd6b97e79642b76aa0bf3ff

Switch to a previous commit (earlier state)

Want to get your code from before one or more changes? Find the commit id and use it.

git checkout mybranch

You can’t do much more than look around, but it can be useful, especially after a major architecture change that broke one tiny thing and you need to know why.

Pull upstream updates

git pull

Add a file

git add filename

Move a file

git mv sourcefile destinationfile

Note: You can move a directory or source file or destination file can include directories.

Delete a local branch

git branch -d mybranch


git status

Revert uncommitted changes to a file

git checkout path\to\file.ext

Remove all untracked files

This makes the repository clean again.
Do a dry run first with -n.

git clean -n

Then do it for real with -f.

git clean -fxd

git diff

git diff

git merge

git merge myBranch

Take all upstream source files

git checkout --ours .
git add .

Keep all local files

git checkout --theirs .
git add .

Abort the merge

git merge --abort

git reset or undoing a local commit

Reset your local branch to head, but keep all the changes. Use this to undo a commit.

git reset HEAD^

git rebase

This at first looks easy. But there is complexities, especially if you have already pushed.

git rebase master

If a merge conflict occurs, fix it and then run:

git rebase --continue

If you have already pushed, run this to push once rebase is complete.

git push --force-with-lease

git squash all commits

This is a multistep process. The assumption is that you are in your feature branch.
Make sure you have no lingering changes and everything is committed before starting.
Branch name in example: FeatureA

git checkout master
git pull
git checkout -b FeatureA_2
git merge --squash FeatureA

Now if you want the branch named the same, you can delete FeatureA and rename FeatureA_2 to FeatureA.

Delete local branch

git branch -d yourbranch

To force, just use a capital D.

git branch -d yourbranch

Rename local branch

git branch -m newBranchName

If you are in master and want to rename a feature branch without checking it out:

git branch -m oldBranchName newBranchName

Git conflict with Visual Studio .sln file

Often, when multiple developers are working on the same solution and adding new projects to it, git will conflict easily.
Instead of trying to merge the .sln, it is often much faster, especially if you have only added a project or two, to just take the current master’s .sln and re-add your projects to the sln.

So imagine you are working on branch FeatureA.
Note: Remember, where “ours” and “theirs” points to is opposite of where they point to on a merge.

git checkout master
git pull
git checkout FeatureA
git rebase master
git checkout --theirs /path/to/yourproj.sln
git rebase --continue

You will then have to save your commit as the commit text will open. Remember to press “Esc + Shift + :” and then type wq! and hit enter.
Now, if your branch has many check-ns, you may have to repeat the process to keep the master (theirs) .sln file.

Once your rebase is completed, make your changes to your .sln and check them in.

Change the git editor from ‘vim’ to ‘notepad++’

git config --global core.editor "'C:/Program Files/Notepad++/notepad++.exe' -multiInst -notabbar -nosession -noPlugin"

Reuseable Building Block Development

If you haven’t paid attention to the development world, you might have missed the current movement called “Reuseable Building Block development.” You know, as a kid, we could get blocks are build anything with them. We only had to stack them. Well, having a n-tier stack is very common, now, so stacking isn’t the issue. It is having blocks that are easy to stack. Some are calling it the open source movement, and while most reusable building blocks are open source, not all of them are. Many of the building blocks don’t have to be open source, but can simply be well-documented and work well.

With NuGet and Npm, building blocks are being created and published daily. The problem now is helping other developers recognize this movement. Changing our mindset from, “we can’t use if it wasn’t invented here,” to something more like, “this is our unique stack of building blocks for a unique problem and this stack was invented here.”

I have created a bunch of building blocks for C#. Check out my github account at You will see a few reusable building blocks:

  • Rhyous.Collections – You know all those pesky extension methods your write for collections that are missing from the collections or from linq. I have a lot of them in here.
  • Rhyous.EasyCsv – A simple tool for working with csv files.
  • Rhyous.EasyXml – A simpel tool for working with Xml. (You might ask why I don’t have one for JSON, and that is because Newtonsoft.Json and fast.jsona already exist , so another one isn’t needed.)
  • Rhyous.EntityAnywhere – Wow, have a full rest api and only have to create the model class. Are you kidding, this is probably the coolest project for Web Service APIs since the REST pattern was introduced.Rhyous.SimplePluginLoader – Easily load plugins in your app.
  • Rhyous.SimpleArgs – Writing a tool with command line arguments? This tool allows you to configure your arguments in a model class and be done. It will output usage and force required parameters and allow for events when a parameter is set, etc.
  • Rhyous.StringLibrary – You know all those pesky extension methods you write for string manipulations missing from .NET Framework. They are in this library, along with a pluralization tool. Every heard of the The oft forgotten Middle Trim, well, it is in this library, too.
  • WPFSharp.Globalizer – The best localization library for WPF that exists, allowing you to change language and style (including left to right flow for certain languages) at runtime.

I actually have many more building blocks. Take a look.

DateTime Within Extension Method

I wrote and extension method to DateTime today. I want to call something simple to see if one date is within a two days of another date. There isn’t a within method. I set out to create one and this what I came up with.

Let me know what you think.

using System;
using System.Collections.Generic;

namespace Rhyous.WebFramework.Handlers.Extensions
    public enum DateTimeInterval

    internal class DateTimeIntervalActionDictionary : Dictionary<DateTimeInterval, Func<double, TimeSpan>>
        #region Singleton

        private static readonly Lazy<DateTimeIntervalActionDictionary> Lazy = new Lazy<DateTimeIntervalActionDictionary>(() => new DateTimeIntervalActionDictionary());

        public static DateTimeIntervalActionDictionary Instance { get { return Lazy.Value; } }

        internal DateTimeIntervalActionDictionary()
            Add(DateTimeInterval.Miliseconds, TimeSpan.FromMilliseconds);
            Add(DateTimeInterval.Seconds, TimeSpan.FromSeconds);
            Add(DateTimeInterval.Minutes, TimeSpan.FromMinutes);
            Add(DateTimeInterval.Hours, TimeSpan.FromHours);
            Add(DateTimeInterval.Days, TimeSpan.FromDays);
            Add(DateTimeInterval.Weeks, (double d) => { return TimeSpan.FromDays(d * 7); });
            Add(DateTimeInterval.Months, (double d) => { return TimeSpan.FromDays(d * 30); });
            Add(DateTimeInterval.Years, (double d) => { return TimeSpan.FromDays(d * 365); });


    public static class DateExtensions
        public static bool IsWithin(this DateTime dateTime, double interval, DateTimeInterval intervalType, DateTime comparisonDateTime)
            TimeSpan allowedDiff = DateTimeIntervalActionDictionary.Instance[intervalType].Invoke(interval);
            TimeSpan diff = dateTime - comparisonDateTime;
            return allowedDiff <= diff;

The problems with the Tiobe Index in regards to .Net

The Tiobe index is really missing one piece of information about .Net for its users. Java is #1. So users should use Java, right? Well, maybe not. Let’s talk about the problems with it before we move on.

I am going to make an argument that:

  1. Java is actually a more clear #1 than suggested.
  2. .Net is #2 behind Java, but not as far behind as the Tiobe index makes it appear.

Problem 1 – DotNet Framework is not listed as one a language

.Net has more languages writing against it than just one. That makes it appear less popular because the language is more fragmented. In fact, two of them are in the top 5 or 6. However, the fact that a dll compiled in either language can be consumed by either language is really not described here. I am not saying this should be on the same list of programming languages, but Tiobe should make it clear that the combined .Net languages show .Net as being used more heavily. Similary for Java, there are other languages that compile to the JVM. Perhaps there should be a page on compile target: What percent of languages compile to .Net’s Common Intermediary Language or compile to the Java Virtual Machine or to machine code or don’t compile at all?

As for intermediary languages, there are only two that stand out: Java and .Net. And Java is #1 but it only has 1 in the top 10. .Net has two in the top 10 and the combined languages are easily a rival to the combined JVM languages.

Look at the Tiobe index and add up the .Net Framework languages:

.Net Framework Languages

Language 2019 Tiobe Rating
Visual Basic .Net 5.795%
C# 3.515%
F# 0.206%
Total 9.516%

Notice that combined, the number of the three main .Net languages is %9.516. That puts .Net in the #3 position behind Java, C, and C++.

Problem 2 – Some .Net languages are missing and may be lumped in other languages

What about Visual C++? Yes, you can write .Net code in C++. However, that language is completely missing from Tiobe. Or is it? Is all Visual C++ searches lumped in with C++? If so, shouldn’t Visual C++ be separate out from C++. What is the Tiobe raiting Visual C++ would get? That would be hard to guess. But it is a language has been around for almost two decades. Let’s assume that a certain percentage of C++ developers are actually doing Visual C++. Let’s say it is more than F# but quite a lot less than C#. Let’s just guess because unlike Tiobe, I don’t have have this data. Let’ say it was .750. Again, this is a wild guess. Perhaps Tiobe could comment on this, perhaps they couldn’t find data on it themselves.

.Net Framework Languages

Language 2019 Tiobe Rating
Visual Basic .Net 5.795%
C# 3.515%
F# 0.206%
F# 0.206%
Total 10.266%

As you see, .Net combined is clearly #3 just by combining the .Net languages. Well past Python, which in fact can be used to both code for .Net (IronPython) and for the Java JVM (Jython). What percent of python is used for that?

Here is a wikipedia list of .Net-based languages:

Similarly, for Java, languages like Groovy up it’s score. Here is a wikipedia list of Jvm-based languages:

Problem 3 – Visual Studio is Awesome

For all the problems and complaints of bloat, Visual Studio is the move feature rich IDE by such a long ways that I doubt any other IDE will ever catch up to it, except may Visual Studio Code, which, however, is just as much part of the Tiobe index problem as Visual Studio is.

The better the tool, the less web searching is needed. The breadth of the features in Visual Studio is staggering. The snippets, the Intellisense, the ability to browse and view and even decompile existing code means that .Net developers are not browsing the web as often as other languages. My first search always happens in Intellisense in Visual Studio, not on Google. The same features and tooling in other IDEs for other languages just isn’t there. Maybe Exclipse, but only with hundreds for plugins that most developers don’t know about.

After Visual Studio 2012 released, the need to search the web has decreased with every single release of Visual Studio. I am claiming that C#, which is the primary .Net Framework language microsoft code for in Visual Studio, is used far more than Visual Basic .Net. Tiobe has Visual Basic .Net at 5.795% and C# at 3.515%, but reality doesn’t match Tiobe’s statististics. C# is used far more than Visual Basic .Net.

I am making the hypothesis that as the primarily coded language in Visual Studio, C# would appear to go down in the Tiobe index since the release of Visual Studio 2012. Let’s test my hypothesis by looking at the Tiobe year-by-year chart for C#. Do we see the Tiobe index going down starting with the release of VS 2012?

After looking at the Tiobe index, I am upgrading my claim from a hypothesis to a theory.

Other .Net languages may not experience the same as C# as the tooling in .Net is primarily focussed around C#.

So the reality is that the Tiobe index is showing the data it can find from search engines, but the data for C# is just not there because a lot of the number of ways C# deflects the need to search.

I hypothesise that C# reached a peak Tiobe index of 8.763% and it’s usage has not actually gone down. Instead, it has gone up. However, the data doesn’t exist to prove it. Assuming the hypothesis is correct, and C# usage has gone up, then the rate it should be is closer to 9 or 10. That means the C# is probably #3 on it’s own.

If we adjust to take this problem into account, simply by using the 2012 index and not assuming the the usage rate has gone up, we see the following:

.Net Framework Languages

Language 2019 Tiobe Rating
Visual Basic .Net 5.795%
C# 8.7%
F# 0.206%
F# 0.206%
Total 17.606%

Now, I am not saying .Net is above Java with my hypothesized 17.505% adjusted rating. Java has other languages as well that compile to the JVM that would similarly raise it and it is still #1.

Problem 4 – Direct linking to or searching on

Microsoft has done a great job with a lot of their documentation. Some of this could be attributed to Visual Studio as well. After clicking a link in Visual Studio, we are taking directly to a site like where I do a lot of my language searches.

Also, Microsoft has built a community where customers can ask questions and get data.

Tiobe has a nice document that clearly states which search enginers did not qualify and what the reason they didn’t qualify was.



I would argue that a significant amount of searches for .Net languages are done primarily on I can only provide personal data. I often go directly to the source documentation on and search on Microsoft’s site. And once I am there almost all further searches for .Net data occur there.

Microsoft has more C# developers in their company that many programming languages have world wide. Are they doing web searches through the list of qualified search engines?

Problem 5 – Better documentation

I hypothesize that the better the documentation, the less searching on the web is required. I also hypothesize that Microsoft is one of the best at providing documentation for it’s languages.

Because the documentation for .Net framework is so excellent, the question is usually answered in a single search instead of multiple searches that languages that are less well documented may require.

Problem 6 – Education

Colleges are teaching certain languages. Python and C++ are top languages taught in college. I would estimate that because of these, the languages primarily taught in college have far higher good search rates. Unfortunately, .Net languages, because of their former proprietary nature (which is no longer the case with the open source of .Net Core), were shunned by colleges.

It would be interesting to filter out searches by college students. Unfortunately, how would Tiobe know that a search came from a college student or not.

Problem 7 – Limited Verbage

Tiobe is only looking at certain words. The words that are being queried are:

  • C#: C#, C-Sharp, C Sharp, CSharp, CSharp.NET, C#.NET

Further, Tiobe says:

The ratings are calculated by counting hits of the most popular search engines. The search query that is used is

+"&lt;language&gt; programming"

This problem piggy backs on Problems 3, 4, and 5. Visual Studio is so awesome, that we know exactly what we are looking for. As a C# developer, I don’t type C# into my searches hardly at all. I type something like: WebApi, WCF, WPF, System.Net.Http or Entity Framework or LINQ, Xamarin, and many other seaches. Microsoft documentation is so clear and specific (Problem 5) that we can do highly specific searches without including the word C#.

Yes, other languages have libraries, too, but do other languages have Microsoft’s marketing department that brands libraries with trademarks and logos and makes that brand the goto phrase to search? I don’t think there is a single other programming language other than C# that does this. Microsoft is lowing the web searches for C# by their awesome marketing.

This is further evidence to explain why the actual usage of C# has gone way up while the Tiobe index has gone way down. Asp.Net, Ado.Net, Razor, WCF, WebApi, WPF, WF,  etc. What other language has logos and brands around specific parts of a language?

Problem 8 – Is C# always seen as C# in search engines

I don’t always add C# to my google searches. However, when I do, it is somehow changed to just C. The sharp symbol, #, is often removed. This recently stopped happening on Google, but it used to happen with every search in every browser. It was frustrating.

Has this been addressed in search engine stats?


The belief that C# is in the 3% range is an unfortunate error of circumstances. And .Net should be looked at is the second most important tool for a programmer, second only to Java, and above all other programming languages.



How to truncate all tables except one in MS SQL

It is well-known that a SQL guru can truncate all tables. This is not something anyone is going to do in production. For while coding or testing, this might be a common practice.

To truncate all tables, use the following sql:

EXEC sp_MSforeachtable 'TRUNCATE TABLE ?'

However, what if you wanted to exclude one table. For example, if using Entity Framework, one might want to keep the __MigrationHistory table untouched.

EXEC sp_MSForEachTable 'if ("?" NOT IN ''[dbo].[__MigrationHistory]'')

I finally figured it out by learning how to query the values:

EXEC sp_MSforeachtable 'if ("?" NOT IN ("[dbo].[__MigrationHistory]"))
         SELECT "?"'

It took me a good hour to figure this out. The key was to quote the ? variable.

How to Replace WCF Serialization with Json.Net without Wrapping and with UriTemplate Support

First, yes, I am still using WCF. Let’s move passed that concern to the real concern.

There are a dozen blog posts out there that explain how to replace the WCF serializer with Json.Net, however, every last one of them says that you must use wrapping and using parameters in the UriTemplate is not supported.

Just search the internet for WCF IDispatchMessageFormatter Json.Net. You will find all the articles that only work without UriTemplate support.

Well, I needed it to work with UriTemplate support without wrapping.

Turns out that this solution is far easier than I expected. I came accross this solution only after spending hours browsing Microsoft’s code.

So, to start, using parameters in the UriTemplate means that your Url or Url parameters will be specified in the UriTemplate and will have parameters.

For example, the Odata spec says that you should access an entity by Id with this a Url similar to this one:


Then the method for the WCF service is like this:

[WebInvoke(Method = "GET", UriTemplate = "Users({{id}})", ResponseFormat = WebMessageFormat.Json)]
OdataObject Get(string id);
public virtual OdataObject Get(string id) 
    // code here

That is fine for a GET call as it doesn’t have a body. But what about a POST, Patch, or PUT call that does have a body? And what about now that the world is realizing that a GET sometimes needs a body?

Also, the examples provided a lot of code to figure out if it is a GET call and not even use the custom Json.Net IDispatchMessageFormatter. None of that code is necessary with this solution.

Let’s look at a PUT call that updates a single property of an entity as this has two parameters in the UriTemplate as well as a message body.

[WebInvoke(Method = "PUT", UriTemplate = "Users({{id}})/{{Property}} ResponseFormat = WebMessageFormat.Json)]
string UpdateProperty(string id, string property, string value);

public virtual OdataObject Put(string id, string property, string value)
// code here to update user

So there are two parameters in the UriTemplate, id and property, and the last parameter, value, is in the message body. Not a single solution for replacing the WCF serializer with Json.Net supports this scenario. Until now.

The goal is to deserialize the request with Json.Net. But the solutions provided break UriTemplate parameters in trying to reach the goal. The goal is not to replace the default WCF UriTemplate parameter work.

So now we can define a new problem: How do we deserialize the body with Json.Net but still have the UriTemplate parameters handled by WCF? The code to deserialize is the same code for both the parameters and the message body. We need to get the parameters without having WCF use the default deserializer for the message body.

Turns out, this problem is easy to solve.

Microsoft published their WCF code. Look at this code, lines 50-54:

If you notice in line 50, WCF has the number of parameters from the Url and Url parameters and it subtracts that from the total list of parameters. If the message has not body, the subtraction result is always 0. If the message has a body, the subtraction always results in 1, telling WCF to deserialize the body. Well, I want WCF to do what it normally does with UriTempalte parameters, so if there is no body, use the WCF default stuff (which all the blogs say to do, but they do it the hard way).


  1. In the custom EndPointBehavior, on the override, store the default IDispatchMessageFormater and pass it into the CustomDispatchMessageFormatter.
protected override IDispatchMessageFormatter GetReplyDispatchFormatter(OperationDescription operationDescription, ServiceEndpoint endpoint)
    var parentFormatter = base.GetReplyDispatchFormatter(operationDescription, endpoint);
    return new CustomDispatchMessageFormatter(this, operationDescription, parentFormatter);
  1. If there is no body, use the WCF default DeserializeRequest method. This vastly simplifies the code on the blogs out there. The other examples had masses of code upstream that just wasn’t needed when message.IsEmpty could be used.
  2. If there is a body but no parameters, just use Json.Net.
  3. If there is a body and there are UriTemplate parameters, create a temparary parameter array 1 size smaller and pass that into the default serializer.
  4. Copy the temp array to the orignal array.
  5. Then just deserialize with Json.Net.
public void DeserializeRequest(Message message, object[] parameters)
     if (message.IsEmpty || parameters.Length == 0)
         ParentFormatter.DeserializeRequest(message, parameters);
         DeserializeMessageWithBody(message, parameters);

private void DeserializeMessageWithBody(Message message, object[] parameters)
     if (parameters.Length > 1)
         object[] tmpParams = new object[parameters.Length - 1];
         ParentFormatter.DeserializeRequest(message, tmpParams);
         tmpParams.CopyTo(parameters, 0);
     if (message.GetWebContentFormat() != WebContentFormat.Raw)
         throw new InvalidOperationException("Incoming messages must have a body format of Raw.");
     byte[] rawBody = message.GetRawBody();
         var type = OperationDescription.Messages[0].Body.Parts.Last().Type;
         parameters[parameters.Length - 1] = RawBodyDeserializer.Deserialize(rawBody, type);

The deserializer becomes vastly simplified now that it isn’t trying to also handling wrapped parameters.

public class RawBodyDeserializer : IRawBodyDeserializer
    public object Deserialize(byte[] rawBody, Type type)
        using (MemoryStream ms = new MemoryStream(rawBody))
        using (StreamReader sr = new StreamReader(ms))
            JsonSerializer serializer = new JsonSerializer();
            return serializer.Deserialize(sr, type);

Debugging Open Source dependencies included as NuGet packages

You may encounter the need to debug into a dependency that is NuGet package. If this NuGet package is proprietary, you need to contact the vendor. However, if the NuGet package is open source, perhaps on GitHub, then you have all the tools you need to debug into it. Debugging into an open source NuGet package is what this article is about.

We are going to use Rhyous.StringLibrary for this example. It is a simple open source project that provides some common extensions to strings. These are extensions that are often found duplicated in many different projects and sometimes multiple times in the same project.

Step 1 – Check out the Source

Check out the repo from GitHub. You need a Git client. If you don’t have one, you can use GitHub Desktop or the one that is included in the Windows install of Git.

  1. Check out the repository: 
    git fetch 

Step 2 – Compare Assembly Versions

Some NuGet packages have different assembly versions than the code. I know, they shouldn’t be it happens. Make sure that the assembly version of the dll reference via the nuget package is the same as the assembly version in the downloaded source.

  1. In your project that references the NuGet package, expand the references, highlight the dll that came from the NuGet package, and note the assembly version.

  2. In the download NuGet package source project, check the Assembly version. This is different in .NET Framework and .Net Standard, but it should be easy to figure out in both.

Step 3 – Build the Solution

  1. Open the StringLibrary.sln in Visual Studio.
  2. Click Build.
  3. Go to the output directory and copy the dll and pdb files.

Step 4 – Copy the dll and pdb to your solution

If you go to your project that references the dll, find and highlight the reference and go to properties, you can see the full path to the referenced dll.

  1. Go to the solution folder of the project you are working on.
  2. Go to your project that references the dll.
  3. Under References, locate the dll.
  4. Go to Properties of the dll reference by pressing F4.
  5. Note the path to the dll.
  6. Go into the Packages directory.
  7. Find the folder for Rhyous.StringLibrary.
  8. Locate the dll folder. 
  9. Rename the existing rhyous.stringlibrary.dll to rhyous.stringlibrary.dll.orgininal.
  10. Copy the compiled dll and pdb from Step 2 to this folder.
  11. Clean and build your solution.

Step 5 – Add a breakpoint

You should now be able to step into the Rhyous.StringLibrary source from your project.

Note: If you have two instances of Visual Studio open, one for your project and one for Rhyous.StringLibrary project, you may think you put the break point in on the one with the SimplePluginLoader project. You don’t.  You don’t even need the Rhyous.StringLibrary project open, unless you need to make a change and recompile and recopy the dll and pdb to the packages directory. You simply need to step into the code in order to set a break point.

Note: One trick is to go to Tools | Options | Debugging | General and turn off Step over Property operators (Managed Only).

  1. Debug your poject.
  2. Put a break point on the call to Rhyous.StringLibrary you would like to step into.
  3. Step into the call to Rhyous.StringLibrary.
    Once you have stepped into the call, you should see it’s source.
    Continue stepping into or over or whatever you would like.
    Once you are in the source, you can add breakpoints.
    Note: If you know how to add a break point without first stepping into the project, let me know.

You should now be easily debugging your NuGet package.

Why long emails should be avoided as a Dev Lead

I keep failing to a avoid a common mistake as a leader. Sending long emails. It seems so easy. For whatever reason, as the dev lead, I cannot talk to a person face-to-face so I write a long email.

I could spend time talking about why email is bad, or I could show you how emails make people feel by showing you an email dialogue.

Why long emails should be avoided:

Dev Lead: I’m being a good mentor. Write a nice long email that will help the team grow on a subject A, that includes tons of info on Subject A, including its 5 benefits. I send this email to Dev1 and CC the other two members of my team.
Feels good about his leadership.

Dev 1: What the dev thinks: Uh, oh. The dev lead is having a hissy fit again. Looks like he is pissed at something I did. What a jerk.
Feels angry.

Dev 2: Oh no. I have no idea what the dev lead is talking about. Do I know my stuff? Googles and tries to learn what the dev lead is talking about.
Feels shamed.

Dev 3: Ugh! Why is he trying to teach me crap I already know.
Feels patronized.

Manager: Hey, the team didn’t appreciate that email.

Dev Lead: Feels like a poor leader.

Manager: Feels like he is losing his team.

Why it would have happened better face-to-face:

Dev Lead: Hey devs. I want to discuss subject A. What do you know about it already?

Dev 1: I’ve used it before

Dev 2: Stays silent.

Dev 3: I know all about Subject A.

Dev Lead: OK, Dev 3, tell us about subject A.

Dev 3: Gives four excellent points about subject A. One of them the dev lead didn’t know.

Dev Lead: Adds two points about subject A that Dev 3 didn’t know. Changes his list from 5 to 6 adding the one item Dev 3 did knew.
Feels impressed by Dev 3.

Dev 1: Feels growth.

Dev 2: Feels good to be introduced to a new subject.

Dev 3: Impressed that the dev lead let him educate the team.
Feels more respect for dev lead. Also notes that the Dev Lead knew things he didn’t and thinks he should listen more.

Manager: Feels good about the team.

It is all about the feelings, and there is something about face-to-face team interaction that leads to good feelings and something about long emails that always leads to bad feelings.

So, if you look at the face-to-face interaction, you can see that it all started with a short question. You could simulate this in a short email:

Dev Lead: Who can give me all the benefits of Subject A using only the knowledge in your head. No browser search allowed until after you respond.

Dev 1: Responds with the single most common benefit if subject A.

Dev 2: Doesn’t respond.

Dev 3: Responds with four items, one that the dev lead didn’t now about.

Dev Lead: Interesting. Here are the items that the team responded with. I added two more benefits for a total of 6. Should we use subject A to get those 6 benefits in our project?

Now imaging the response was crickets.

Dev Lead: Who can give me all the benefits of Subject A.

Dev 1: Doesn’t respond.

Dev 2: Doesn’t respond.

Dev 3: Responds with one item.

Dev Lead: Subject A is interesting and important to our project. I am going to create a quick training on it.

Dev Lead: Writes a doc on it and sends it to the team.

Team: Feels good to learn something new.

Manager: Feels like the team is running itself.


  1. Keep emails short.
  2. Use many short emails.
  3. Ask questions, preferable one-liners:
    1. Start by asking your team what they already know first.
    2. Ask follow-up questions second
  4. Compile responses into a bulleted list
    1. Add to the list if you can
    2. Ask questions about the list
  5. Thank the team

I am going to put these tips into practice next time I feel like sending a long email.

Code Review – Quick Reference

This is a simple check-list to make code reviews more valuable. Simply check these rules.

Download a single page word document: Code Review Cheat Sheet

Does the code follow the 10/100 Rule?

This is a quick check rule that isn’t extremely rigid. See the 10/100 rule of code

Method has less than 10 lines

Is the method that was added or changed 10 lines or less? (There are always exceptions such as Algorithms)


Is the class 100 lines or less?
Note: Model classes should have zero functions closer to 20 lines. Logic classes should be sub-100 lines.

Is the code S.O.L.I.D.

S.O.L.I.D. is an acronym. See this link:

Single Responsibility Principal

Does each class have a single responsibility? Does each method have a single responsibility?
Is this the only class that has this responsibility? (No duplicate code or D.R.Y. (Don’t Repeat Yourself)

Open/Closed Principle

Can you extend the functionality without modifying this code? Config, Plugins, event registration, etc.
Is there configuration is this code? If so, extract it. Configuration does not belong in code.

Liskov substitution principle

Is inheritance used? If so, does the child type cause issues the parent type wouldn’t cause?

Interface segregation principle

Does the code use interface-based design?
Are the interfaces small?
Are all parts of the interface implementations without throwing a NotImplementedException?

Dependency inversion principle

Does the code reference only interfaces and abstractions?
Note: If new code references concrete classes with complex methods, it is coded wrong.

Is the code Unit Tested

99% coverage

Is the Code 99% covered? Is code not covered marked with the ExcludeFromCodeCoverageAttribute?

Parameter Value Tests for methods with parameters

Are all parameter values that could cause different behavior covered?
See these links:
Unit testing with Parameter Value Coverage (PVC)
Parameter Value Coverage by type

Naming things


Are your names typo free?

Naming convention

Do your file names, class names, method names, variable names match existing naming conventions?

Big O

Do you have any glaringly obvious Big O problems? n or n2 vs when it could be constant or log n.

Parameter Value Coverage by Type

This article is a reference to Unit Testing with Parameter Value Coverage (PVC).

Primitive or Value Types

See this reference.

Short Name .NET Class Type Width Range (bits)
byte Byte Unsigned integer 8 0 to 255
sbyte SByte Signed integer 8 -128 to 127
int Int32 Signed integer 32 -2,147,483,648 to 2,147,483,647
uint UInt32 Unsigned integer 32 0 to 4294967295
short Int16 Signed integer 16 -32,768 to 32,767
ushort UInt16 Unsigned integer 16 0 to 65535
long Int64 Signed integer 64 -9223372036854775808 to 9223372036854775807
ulong UInt64 Unsigned integer 64 0 to 18446744073709551615
float Single Single-precision floating point type 32 -3.402823e38 to 3.402823e38
double Double Double-precision floating point type 64 -1.79769313486232e308 to 1.79769313486232e308
char Char A single Unicode character 16 Unicode symbols used in text
bool Boolean Logical Boolean type 8 True or false
object Object Base type of all other types
string String A sequence of characters
decimal Decimal Precise fractional or integral type that can represent decimal numbers with 29 significant digits 128 ±1.0 × 10e−28 to ±7.9 × 10e28


  1. Zero, 0, which is also byte.MinValue.
  2. A positive byte between 0 and 255.
  3. byte.MaxValue or 255


  1. Zero, 0, which is also sbyte.MinValue.
  2. A positive sbyte between 0 and 127.
  3. A negative sbyte between -128 and 0.
  4. sbyte.MaxValue or 127
  5. sbyte.MinValue or -128


  1. A positive int between 0 and 2,147,483,647
  2. A negative int between -2,147,483,648 and 0
  3. Zero, 0
  4. int.MaxValue or 2,147,483,647
  5. int.MinValue or -2,147,483,648


  1. Zero, 0, which is also uint .MinValue.
  2. A positive uint between 0 and 4,294,967,295.
  3. uint .MaxValue or 4,294,967,295


  1. A positive short between 0 and 32,767
  2. A negative short between -32,768 and 0
  3. Zero, 0
  4. short.MaxValue or 32,767
  5. short.MinValue or -32,768


  1. Zero, 0, which is also ushort .MinValue.
  2. A positive ushort, such as 1 through 65,535.
  3. ushort.MaxValue or 65,535


  1. A positive long between 0 and 9,223,372,036,854,775,807
  2. A negative long between -9,223,372,036,854,775,808 and 0
  3. Zero, 0
  4. long.MaxValue or 9,223,372,036,854,775,807
  5. long.MinValue or -9,223,372,036,854,775,808


  1. Zero, 0, which is also ulong.MinValue.
  2. A positive ulong between 0 and 18,446,744,073,709,551,615.
  3. ulong.MaxValue or 18,446,744,073,709,551,615


  1. A positive float between 0 and 3.402823E+38
    1. Note: This includes the float.Epsilon, but you could test double.Epsilon separately
  2. A negative float between -3.402823E+38 and 0
  3. Zero, 0.0
  4. float.MaxValue or 3.402823E+38
  5. float.MinValue or -3.402823E+38
  6. float.NaN
  7. float.PositiveInfinity
  8. float.NegativeInfinity


  1. A positive double between 0 and 1.79769313486232E+308
    1. Note: This includes the double.Epsilon, but you could test double.Epsilon separately
  2. A negative double between -1.79769313486232E+308 and 0
  3. Zero, 0.0
  4. double.MaxValue or 1.79769313486232E+308
  5. double.MinValue or -1.79769313486232E+308
  6. double.NaN
  7. double.PositiveInfinity
  8. double.NegativeInfinity


  1. A positive double between 0 and 79,228,162,514,264,337,593,543,950,335
  2. A negative double between -79,228,162,514,264,337,593,543,950,335 and 0
  3. Zero, 0
  4. double.MaxValue or 79,228,162,514,264,337,593,543,950,335
  5. double.MinValue or -79,228,162,514,264,337,593,543,950,335


  1. A null string
  2. An empty string, String.Empty, or “”
  3. One or more spaces ” “
  4. One or more tabs ” “
  5. A new line or Environment.NewLine
  6. A valid string.
  7. An invalid or junk string
  8. A string with many special characters: `~!@#$%^&*()_-+=,.<>/\?[]{}|
  9. Unicode characters such as Chinese
  10. An long string, over 256 characters, or even 1 million characters.
  11. (Occasionally) Case sensitivity. For example, for string comparisons, case sensitivity of a string is a required Parameter Value Coverage test.


  1. It is impossible to know. You need to define this per struct you create. For example, if your struct is a point with int values X and Y, then it is simply the int list above twice, once for X and once for Y.


  1. Any of the enums.
  2. You may need to do each of the enums, depending on how your enum is used.

Class or Reference Types

Class Object

Objects that are defined with the class keyword need the following tested:

  1. Null (This might go away or become optional in .NET 4.8)
  2. Instantiated
  3. Class properties can be primitive or value types, reference types, etc., and may need to be tested according to the type of the property.

Array, List, Dictionary, and other collections

Array, List, Collection

  1. Null
  2. Empty (instantiated with no items)
  3. Not empty but values of array are tested according to the value type. For example, an int[] would need to have the values tested in the ways listed above for int.
    1. Pay attention to how the code you are testing uses teh items in an array or list. If the items are objects, do you need to check if the list has a null item in the list?


  1. Null
  2. Empty (instantiated with no items)
  3. Key exists
  4. Key doesn’t exist
  5. Value at key is tested according to its value type. For example, a Dictionary<string, int> would need to have the values tested in the ways listed above for int.

Amazon Ec2 Instance Management with C#: Part 3 – Uploading and Importing a Key Pair

Before getting started

Skill Level: Beginner


  1. You have completed Part 1 and 2 of Managing Amazon AWS with C# – EC2

Additional Information: I sometimes cover small sub-topics in a post. Along with AWS, you will also be exposed to:

  • .NET Core 2.0 – If you use .NET Framework, the steps will be slightly different, but as this is a beginner level tutorial, it should be simple.
  • Rhyous.SimpleArgs


We may already have a key pair that we want to use, so we don’t want to create a new one. If that is the case, it can be uploaded.

Step 1 – Get key in the correct format

I used OpenSSL to do this.

  1. Download OpenSSL.
  2. Run this command:
    .\openssl.exe rsa -in c:\users\jbarneck\desktop\new.pem -pubou
    t -out c:\users\jbarneck\desktop\

Step 2 – Edit InstanceManager.cs file

We’ve created InstanceManager.cs in Part 1. Let’s edit it.

  1. Add a method to read the key file from disk and upload and import the key pair.
  2.         public static async Task ImportKeyPair(AmazonEC2Client ec2Client, string keyName, string keyFile)
                var publicKey = File.ReadAllText(keyFile).Trim().RemoveFirstLine().RemoveLastLine();
                string publicKeyAsBase64 = Convert.ToBase64String(Encoding.UTF8.GetBytes(publicKey));
                await ec2Client.ImportKeyPairAsync(new ImportKeyPairRequest(keyName, publicKeyAsBase64));

Notice: We are calling RemoveFirstLine() and RemoveLastLine(); This is because key files have a header and footer that must be removed before sending up to AWS. We’ll do this in the next section.

Step 3 – Add methods RemoveFirstLine and RemoveLastLine

  1. By the time this publishes, you should only need to install Rhyous.String.Library. Otherwise, add this class file:
    namespace Rhyous.AmazonEc2InstanceManager
        public static class StringExtensions
            public static string RemoveFirstLine(this string text, char newLineChar = '\n')
                if (string.IsNullOrEmpty(text))
                    return text;
                var i = text.IndexOf(newLineChar);            
                return i > 0 ? text.Substring(i + 1) : "";
            public static string RemoveLastLine(this string text, char newLineChar = '\n')
                var i = text.LastIndexOf(newLineChar);
                return (i > 0) ? text.Substring(0, i) : "";

Step 4 – Configure command line Arguments.

We already have an Actions arguments to edit.

  1. Add DeleteKeyPair as a valid action to the Action argument.
  2. Add an additional argument for the key file.
                . . .
                new Argument
                    Name = "Action",
                    ShortName = "a",
                    Description = "The action to run.",
                    Example = "{name}=default",
                    DefaultValue = "Default",
                    AllowedValues = new ObservableCollection<string>
                    IsRequired = true,
                    Action = (value) =>
                . . .
                new Argument
                    Name = "KeyFile",
                    ShortName = "pem",
                    Description = "The full path to a public key already created on your file system in PEM format. The full Private key won't work.",
                    Example = "{name}=c:\\My\\Path\\mykeyfile.pem",
                    CustomValidation = (value) => File.Exists(value),
                    Action = (value) =>

You can now upload a public key file for use on the Amazon Cloud.

Next: Part 4

Return to: Managing Amazon AWS with C#