Code Review Checklist
1. [] Does the code follow the 10/100 Rule?
a. [] Added/Changed methods have less than 10 lines
b. [] Changed methods that already over 10 lines are smaller
c. [] Added/Changed classes 100 lines or less?
d. [] Changed class that already over 100 lines are smaller
e. [] Model classes should have zero functions and be closer to 20 lines.
2. [] Is the code S.O.L.I.D.
a. [] Single Responsibility Principal
i. [] Does each class have a single responsibility and a specific name?
ii. [] Does each method have a single responsibility and a specific name?
iii. [] Is this the only class that has this responsibility? (No code duplicated more than twice.)
b. [] Open/Closed Principle
i. [] Can you extend the functionality without modifying the code? Config, Plugins, event registration, etc.
ii. [] Is there configuration in the code? If so, extract it. Configuration does not belong in code.
c. [] Liskov substitution principle
i. [] Is “has a” used over “is a”? Inheritance is avoided and only used by architectural design
1. [] If inheritance exists, does the child type avoid causing issues the parent type wouldn’t cause?
d. [] Interface segregation principle
i. [] Does the code use interface-based design?
ii. [] Are the interfaces small?
iii. [] Are all interface implementations implemented (no empty methods or exceptions thrown)?
e. [] Dependency inversion principle
i. [] Does the code reference only interfaces and abstractions?
ii. [] Is constructor injection used?
3. [] Is the code Unit Tested
a. [] Is the Code 99% covered?
b. [] Is code not covered marked with the ExcludeFromCodeCoverageAttribute?
c. [] Are tests using proper names: <ClassName>_<MethodName>_<State>_<Result>?
d. [] Are tests written with the AAA Pattern?
e. [] Are all parameter values that could cause different behavior covered?
4. [] Is everything named correctly
a. Are your names typo free?
b. Do your file names, class names, method names, variable names match existing naming conventions?
5. [] Big O – is everything performant
a. [] Are there any glaringly obvious Big O problems? n or n2 vs when it could be constant or log n?
6. [] Constant handling
a. [] Are you handling strings safely? No magic strings?
b. [] Are all constants assigned as const variables?
7. [] Documentation
a. [] Is every public method/property/field documented?
b. [] Are inline comments avoided in favor of self-documented code?
8. [] Have you self-reviewed your code?

https://www.rhyous.com/2018/09/20/code-review-quick-reference
