Jared Barneck

Spring 2012

CS 6890 – Combinatorial Algorithms

Professor Renee Bryce

Unit Test Stub Code Generator for Covering Arrays

Motivations

This project was chosen due to multiple motivations that are closely related to the topic of generating unit test stub code for covering arrays.

Motivation 1 - Automate Code Creation

Covering a method with unit tests using a covering array could result in a large amount of unit tests and manually typing these tests out can take a lot of time. As we all know, time is money, especially when paying expensive software developers. This tool could save some man hours and depending on the size of the covering array it could even save some man days.

Motivation 2 – Find bugs beyond 100% Code Coverage

100% code coverage or line coverage (LC) can fail to find bugs. Developers often write a unit test with only the goal to get as close to 100% LC as they can. Unfortunately, they are only covering the written code, but bugs may exist due to code not written.

Let me give you a quick example. The method below is a very common example of a piece of code that looks so simple, most assume there is no way there is a bug, but after a brief analysis, the bug becomes obvious.

 Figure 1

public class Adder()

{

private int Add(int val1, int val2)

{

return val1 + val2;

}

}

To get 100% LC, the following test could be used.

 Figure 2

private void Add_Test()

{

Adder adder = new Adder();

var actual = adder.Add(1,2);

var expected = 3;

Assert.AreEqual(expected, actual)

}

You now have 100% LC, but have you found all the bugs? No you haven't. An int or System.Int32 is a 32-bit integer with a max value of 2,147,483,647. What happens if you add one or more to the max value? The minimum value is -2,147,483,648. What happens if you subtract one or more from this?

I am not going to tell you how to fix this bug in this article, that is not the point. The point is to show that 100% LC failed to find this bug, proving that some thing is missing, some value is not being tracked and reported on. This value is called Parameter Value Coverage (PVC).

Motivation 3 – Introduce Parameter Value Coverage (PVC)

Parameter Value Coverage (PVC) is the ability to track coverage of a method based on the common possible values for the parameters accepted by the method.

As discussed in Motivation 2, current code coverage tools fail to take into consideration the possibility that a value for a parameter is not handled resulting in a bug. However, there may not be any code addressing this value in any way, introducing the possibility of obtaining 100% LC without detecting the bug.

If the common values for types, especially primitive types and known types, are documented and methods that use them are required to have a test for each possible parameter value, bugs can be avoided.

For example, a method that takes in an int or System.Int32 value as a parameter should have a test for each of the following five possible values in order to have 100% LC.

Note: Additionally a sample for System.String is provided.

 Figure 3

	System.Int32
	System.String

	1. A positive integer

2. A negative integer

3. Zero

4. int.MaxValue or 2,147,483,647

5. int.MinValue or -2,147,483,648
	1. A null string

2. An empty string, String.Empty, or ""

3. One or more spaces "
"

4. One or more tabs "
"

5. A new line or Environment.NewLine

6. A valid string.

7. An invalid or junk string

8. Unicode characters such as Chinese

were code coverage tools enhanced to take into account Parameter Value Coverage (PVC), the test code in Figure 2 would result in only 20% PVC even though there is 100% LC. The bugs in the method in Figure 2 are not detected by LC, but they are detected by 100% PVC.

Motivation 4 – Assist new developers

Many new developers are unsure how to properly write unit tests. They are unfamiliar with unit concepts such as common terms, testing frameworks and their options, mocking frameworks, coding styles, and covering algorithms. A unit test code generator serves an additional purpose of giving a new developer and example to learn from.

Product Features

[image: image1.png]Ee Settings

Enter function below:

Unit Test Stub Code

The tool has a simple user interface that Figure 4
visualizes the features that go right along with the motivations.

It is currently only written for C# methods.

The Main Screen

The Main Screen has a menu, an input text box, a button, and an output text box.

The File Menu

Of course it has the standard File | Exit that close the application.

The Settings Menu

The settings menu has three options: Figure 5

· [image: image2.png]Test Framework

Configure Known Types

· N-Way

· Test Framework

Test Framework

Currently this is not much of an option as the only option available is MSTest. However, this is here to demonstrate that the ability exists to add support for additional frameworks such as NUnit.

Future: The potential exists to support not only C# Frameworks but C++, Java, and other testing frameworks. This would be made easier with improved architecture that allowed for other frameworks and languages as plugins.

N-Way

Covering Arrays using two-way (pair-wise) or three way parameter groups are supported.

Future: As this started out as a way to generate covering arrays using n-way one-way was not supported, however, supporting one-way in the future is important.

Configure Known Types

Primitive types and other known types Figure 6

[image: image3.png]Known Types Type Name: System.String

System.Boolean 6 Neme Value StubCodeType
Systemin2 o [Nul nul |Cose

1 [Empty |stingempty |Cose
Syteminted 2 [Space [string
B e oo e
Unknown 4 [vaid A vald string. [Coce

5 [Unicode |27 [string

6 |InvalidString | 1@#5%" 8- _+ <> 7' esdghik String

pod ([Remore Aad I =

r [

are the most common parameter types in methods. These typs can have common values that can be documented. The Configure Known Types settings allows for adding, deleting, and editing known types and their common values.

Figure 6 displays an example of the System.String known type and a list of common values that should be tested in unit tests.

You can add known types. It is important to use the fully-qualified object name, including the namespace, of the type as currently this is used in a type comparison.

The “Unknown” type is used whenever a type is found in a method that is not in the list.

The parameters can be added and removed. The headers are explained as follows.

· Id = A numbered id

· Name = A string used to name the value. This will be used in the test method name, so don't use a character not allowed in a method name (except space, as spaces are removed).

· Value = Any value. So far two tokens are allowed:

· %new% = becomes MyObj param = new MyObj()

· %name% = replaced with the object name.

· StubCodeType = the Value is placed in stub test code. So you may want a string, which means quoted text, or you may want just code, so you have both options.

Future: Have separate values for the name and the fully-qualified object name. Also only a subset of the C# primitive types are included. Most primitive types would end up being treated as Unknown, which is bad as Unknown only has two options null and new, but primitive types cannot be null.

Generating Unit Test Stub Code

Using the tools is simple. Copy and paste a C# method into the method and click the button. The following are three examples of methods that were tested and successfully created unit test stub code.

 Figure 7

public void MyFunction(string inString, bool inBool)

public void MyFunction(string inString, int inInt, bool inBool)

public void MyFunction(Person inPerson, string inString, int inInt)

{

 // Do some stuf

}

The Code

This tool was written in C# using WPF and an MVVM design pattern. The covering array algorithm is the AETG algorithm created earlier.

Future: A method for allowing different algorithms to be added as plugins could exist.

The Projects

CoveringArrayAlgorithm – This is the code where the covering array algorithm resides and this is used to generate the covering array test cases.

CoveringArrayAlgorithm_Tests – This is a test project to unit test code in the CoveringArrayAlgorithm project.

CoveringArrayView – This is not used in this project. It is the view or UI for the algorithm, not for creating stub test code.

UnitTestGeneratorView – This is the project that makes creating the stub test code possible. It has the all code, except the algorithm, needed to make this project happen.

